

Scientific view on the role of nuclear energy in the energy transition

Anke Herold | Europe Calling | 20.04.2023

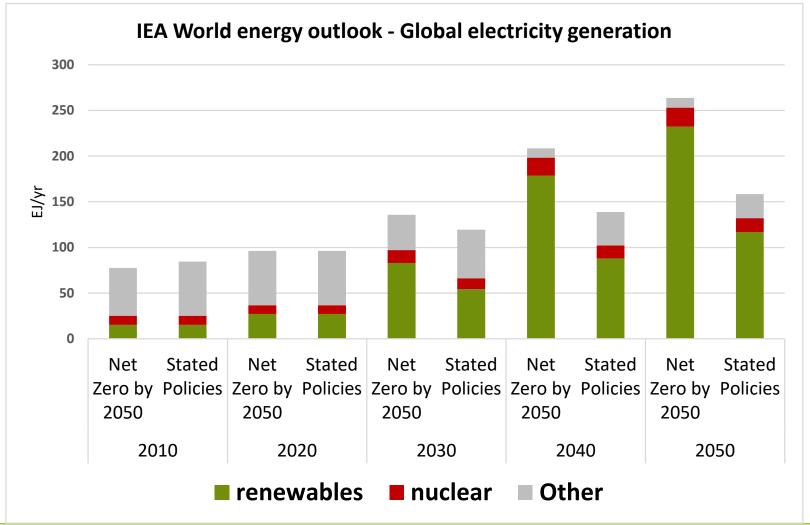
🤴 Öko-Institut e.V.

Share of nuclear electricity generation in total electricity production in global net-zero energy scenarios

18% 16% 14% 12% 10% 8% 6% 4% 2% 0% 2010 2020 2030 2040 2050 GCAM 5.3+ NGFS Net Zero 2050 MESSAGEix-GLOBIOM 1.1-M-R12 Net Zero 2050 -IEA World Energy Outlook 2022 Net Zero by 2050

Share of nuclear electricity in global energy scenarios

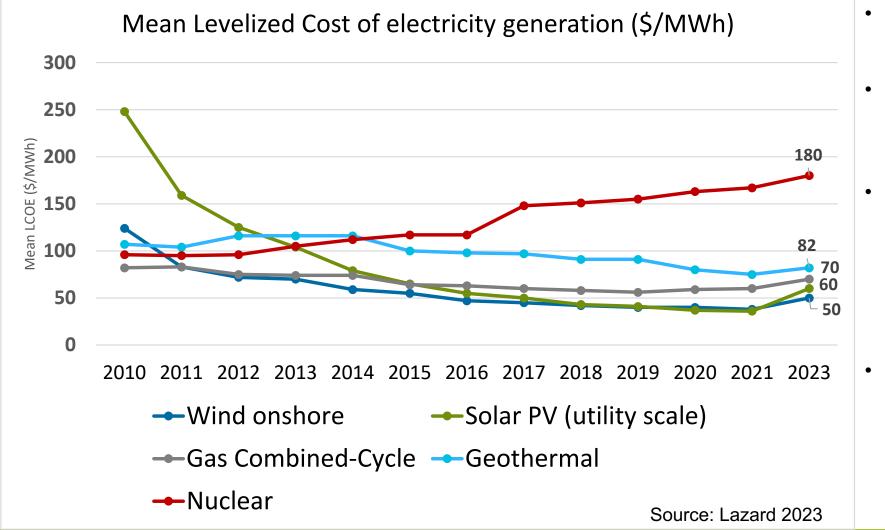
---- Teske et al. Renewable Scenarios 1.5°C Scenario


Share of nuclear electricity in total electricity declining in most scenarios Existing nuclear

policies & programmes of governments do not match ambition of additional nuclear construction in netzero scenarios like IEA Net Zero by 2050

---- IEA World Energy Outlook 2022 Stated Policies

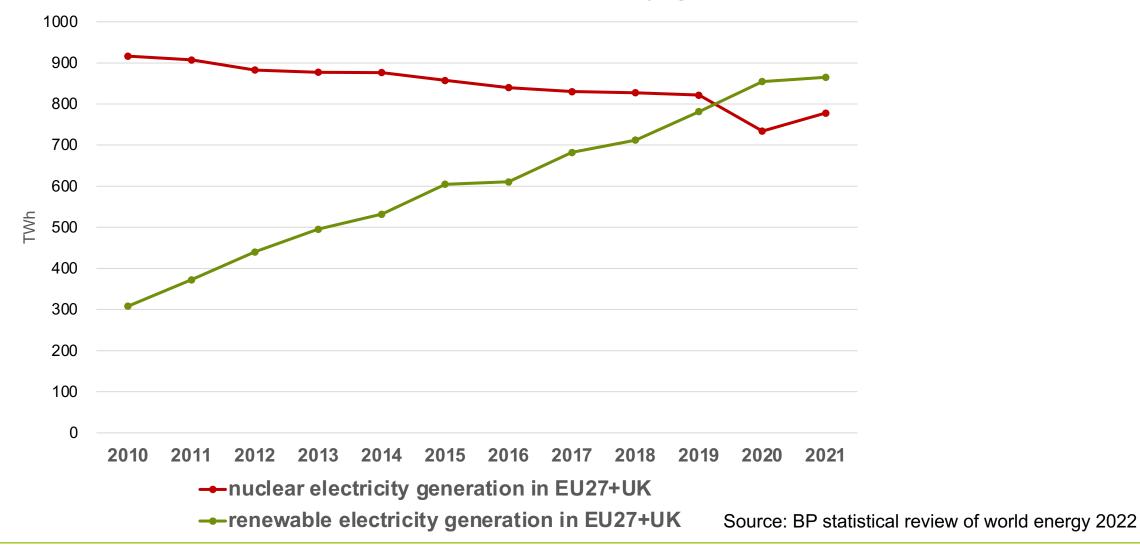
Role of renewables and nuclear in IEA World Energy Outlook scenarios



2050:

Share of nuclear: 8-10% Share of renewables: 75-88%

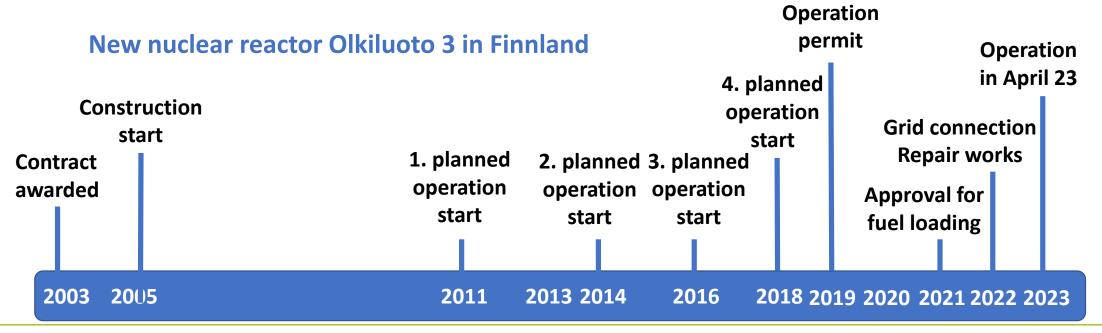
Cost development of renewable and nuclear electricity generation



- nuclear 3.6 times more expensive than wind onshore
- nuclear 3 times more expensive than solar PV
- Impacts of US Inflation
 Reduction Act:
 Nuclear
 US\$ 30 billion
 Renewables &
 batteries:
 US\$ 127-265 billion
 US\$ funding support will
 further reduce
 renewable costs but not
 significantly contribute
 to lower costs for

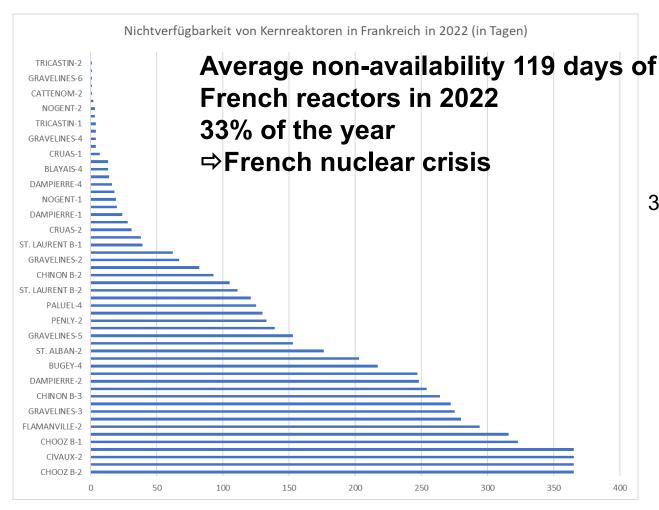
nuclear

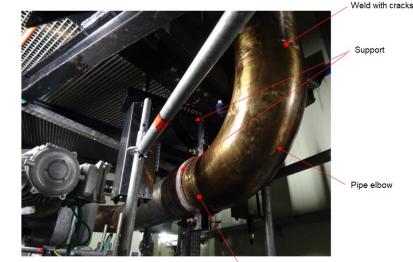
Trends in nuclear and renewable electricity generation in EU


Construction periods of new nuclear plants in EU

Finland: Olkiluato 3 duration of 20 years

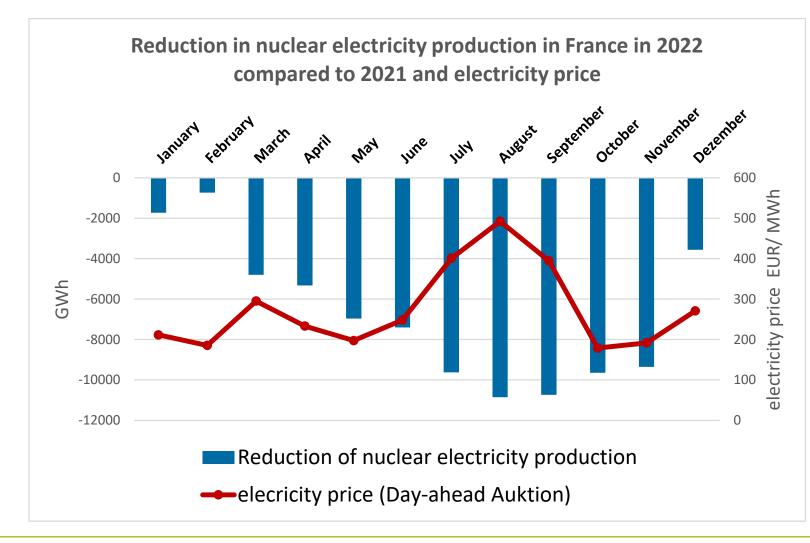
UK: Hinkley Point C approval in 2013, planned operation start in 2023, currently delayed to 2028 ⇒minimum 15 years?


France: Flamanville 3 decision in 2005, operation not yet started, planned for mid-2023 ⇒18 years?


US: Vogtle-3 and 4: 2008 contract awarded, planned operation 2017/2018, one unit started operation in April 2023, 2nd unit planned for end of 2023 ⇒15 years

Non-availability of reactors in France in 2022

Weld with cracks


32 out of 56 nuclear reactors shut down

- 16 of the newest reactors due to corrosion and cracks in pipes of the main cooling circuit
- Remaining reactors due to planned maintenance works
- In summer due to draught & heat conditions

Average non-availability in previous years

- 2021: 103 days per reactor
- 2020:115 days per reactor
- 2019: 96 days per reactor

Nuclear production gap in France contributed to very high electricity prices in Europe in 2022

Increased production and export in Germany to France

What to expect for 2023?

- EDF announced to halt 10 reactors due to corrosion in 2023
- At least 10 reactors in 10-year maintenance and safety assessment in 2023
- Problems will continue

Countries of origin of EU's uranium imports

Kazachstan: Some mines owned by Uranium One which belongs to Rosatom

Uranium conversion: EU imports 24% from Rosatom

Enriched Uranium: EU imports 26% from Rosatom

Rosatom only producer of HALEU, highly enriched uranium required for SMR

21 European reactors fully dependent on fuel rods from Rosatom

- 21 European reactors fully dependent on Russian fuel rods (WWER-440 reactors)
- Change to Westinghouse production estimated to take 6-10 years, will be more expensive
- Rosatom also provides maintenance and spare parts to Russian reactors
- Other western reactors also use partly fuel rods from Rosatom (not detailed information available)
- In February 2024 Rosatom delivered subtantial parts for French ITER research reactor (electricity supply and security system), 50 additional containers to be delivered this year (News on Rosatominternational website 2023)

National Share of electricity production that depends 100% on Russian fuel rods
53% of national electricity
production
45% of national electricity
production
36% of national electricity
production
35% of national electricity
production
11% of national electricity
production (Loviisa)

CO₂ emissions of nuclear plants

Literature sources	GHG emissions	Assumed	Assumed capacity
	gCO₂eq/kWh	reactor age	factor
ISA (2006)	58	35 years	85%
Öko-Institut (2009)	33	30 years	Not provided
Sovacool (2008) review	66	20-60 years	85-98%
Lenzen (2008)	65	35 years	85%
Warner and Heath (2012) review	25-30	30-60 years	70-90%
Storm van Leuwen (2017)	117	25 years	100%
Vattenfall (2019)	4	60 years	Not provided
Zhang and Bauer (2018)	9.4	50 years	Not provided
UNECE (2021)	5.5	60 years	95%
Results strongly dependent on		Average age of nuclear	
assumptions on reactor age and		reactors: 31 years	
capacity factor		Mean age of closed	
Many LCA incomplete coverage		reactors: 28 years	

Thank you for your attention!